Вы вошли как Гость | Группа "Гости"Приветствую Вас Гость | RSS | ГлавнаяМой профиль | Регистрация | Выход | Вход

Главная » Статьи » Официальные авторы "Мечты" » Виктор Сорокин

Великая теорема Ферма для «чайников»

Поскольку мало кто владеет математическим мышлением, то я расскажу о наикрупнейшем научном открытии – элементарном доказательстве Великой теоремы Ферма – на самом понятном, школьном, языке.

Доказательство было найдено для частного случая (для простой степени n>2), к которому (и к случаю n=4) легко сводятся и все случаи с составным n.

Итак, нужно доказать, что уравнение A^n=C^n-B^n решения в целых числах не имеет. (Здесь значок ^ означает степень.)

Доказательство проводится в системе счисления с простым основанием n. В этом случае в каждой таблице умножения последние цифры не повторяются. В обычной, десятичой системе, ситуация иная. Например, при умножении числа 2 и на 1, и на 6 оба произведения – 2 и 12 – оканчиваются на одинаковые цифры (2). А, например, в семеричной системе для цифры 2 все последние цифры разные: 0х2=...0, 1х2=...2, 2х2=...4, 3х2=...6, 4х2=...1, 5х2=...3, 6х2=...5, с набором последних цифр 0, 2, 4, 6, 1, 3, 5.

Благодаря этому свойству для любого числа А, не оканчивающегося на ноль (а в равенстве Ферма последняя цифра чисел А, ну или В, после деления равенства на общий делитель чисел А, В, С нулю не равна), можно подобрать такое множитель g, что число Аg будет иметь сколь угодно длинное окончание вида 000...001. Вот на такое число g мы и умножим все числа-основания A, B, C в равенстве Ферма. При этом единичное окончание сделаем достаточно длинным, а именно на две цифры длиннее, чем число (k) нулей на конце числа U=А+В-С.

Число U нулю не равно – иначе С=А+В и A^n<(А+В)^n-B^n, т.е. равенство Ферма является неравенством.

Вот, собственно, и вся подготовка равенства Ферма для краткого и завершающего исследования. Единственное, что мы еще сделаем: перепишем правую часть равенства Ферма – C^n-B^n, – используя школьную формулу разложения: C^n-B^n=(С-В)Р, или аР. А поскольку далее мы будем оперировать (умножать и складывать) только с цифрами (k+2)-значных окончаний чисел А, В, С, то их головные части можем в расчет не принимать и просто их отбросить (оставив в памяти лишь один факт: левая часть равенства Ферма является СТЕПЕНЬЮ).

Единственное, о чем стоит сказать еще, это о последних цифрах чисел а и Р. В исходном равенстве Ферма число Р оканчивается на цифру 1. Это следует из формулы малой теоремы Ферма, которую можно найти в справочниках. А после умножения равенства Ферма на число g^n число Р умножатеся на число g в степени n-1, которое, согласно малой теореме Ферма, также оканчивается на цифру 1. Так что и в новом эквивалентном равенстве Ферма число Р оканчивается на 1. И если А оканчивается на 1, то и A^n тоже оканчивается на 1 и, следовательно, число а тоже оканчивается на 1.

Итак, мы имеем стартовую ситуацию: последние цифры А', а', Р' чисел А, а, Р оканчиваются на цифру 1.

Ну а дальше начинается милая и увлекательная операция, называемая в преферансе «мельницей»: вводя в рассмотрение последующие цифры а'', а''' и так далее числа а, мы исключительно «легко» вычисляем, что все они также равны нулю! Слово «легко» я взял в кавычки, ибо ключ к этому «легко» человечество не могло найти в течение 350 лет! А ключик действительно оказался неожиданно и ошарашивающе примитивным: число Р нужно представить в виде P=q^(n-1)+Qn^(k+2). На второй член в этой сумме обращить внимание не стоит – ведь в дальнейшем доказательстве мы все цифры после (k+2)-й в числах отбросили (и это кардинально облегчает анализ)! Так что после отбрасывания головных частей чисел равенство Ферма принимает вид: ...1=аq^(n-1), где а и q – не числа, а всего лишь окончания чисел а и q! (Новые обозначения не ввожу, так это затрудняет чтение.)

Остается последний философский вопрос: почему число Р можно представить в виде P=q^(n-1)+Qn^(k+2)? Ответ простой: потому что любое целое число Р с 1 на конце можно представить в таком виде, причем ТОЖДЕСТВЕННО. (Можно представить и многими другими способами, но нам это не нужно.) Действительно, для Р=1 ответ очевиден: P=1^(n-1). Для Р=hn+1 число q=(n-h)n+1, в чем легко убедиться, решая уравнение [(n-h)n+1]^(n-1)==hn+1 по двузначным окончаниям. И так далее (но в дальнейших вычислениях у нас необходимости нет, так как нам понадобится представление лишь чисел вида Р=1+Qn^t).

Уф-ф-ф-ф! Ну вот, философия кончилась, можно перейти к вычислениям на уровне второго класса, разве что лишь еще раз вспомнить формулу бинома Ньютона.

Итак, введем в расмотрение цифру а'' (в числе а=а''n+1) и с ее помощью вычислим цифру q'' (в числе q=q''n+1):
...01=(а''n+1)(q''n+1)^(n-1), или ...01=(а''n+1)[(n-q'')n+1], откуда q''=a''.

И теперь правую часть равенства Ферма можно переписать в виде:
A^n=(а''n+1)^n+Dn^(k+2), где значение числа D нас не интересует.

А вот теперь мы переходим к решающему выводу. Число а''n+1 является двузначным окончанием числа А и, СЛЕДОВАТЕЛЬНО, согласно простой лемме ОДНОЗНАЧНО определяет ТРЕТЬЮ цифру степени A^n. И более того, из разложения бинома Ньютона
(а''n+1)^n, учитывая, что к каждому члену разложения (кроме первого, что погоды изменить уже не может!) присоединяется ПРОСТОЙ сомножитель n (основание счисления!), видно, что эта третья цифра равна а''. Но с помощью умножения равенства Ферма на g^n мы k+1 цифру перед последней 1 в числе А превратили в 0. И, следовательно, а''=0!!!

Тем самым мы завершили цикл: введя а'', мы нашли, что и q''=а'', а в заключение и а''=0!

Ну и остается сказать, что проведя совершенно аналогичные вычисления и последующих k цифр, мы получаем заключительное равенство: (k+2)-значное окончание числа а, или С-В, – так же, как и числа А, – равно 1. Но тогда (k+2)-я цифра числа С-А-В РАВНА нулю, в то время как она нулю НЕ РАВНА!!!

Вот, собственно, и всё доказательство. Для его понимания вовсе не требуется иметь высшее образование и, тем более, быть профессиональным математиком. Тем не менее, профессионалы помалкивают...

Удобочитаемый текст полного доказательства расположен здесь:
http://rm.pp.net.ua/publ/ehlementarnoe_dokazatelstvo_velikoj_teoremy_ferma/21-1-0-1778

Категория: Виктор Сорокин | Добавил: victorsorokin (25.09.2015) | Автор: Виктор Сорокин E
Просмотров: 898 | Комментарии: 2 | Рейтинг: 5.0/1
Всего комментариев: 2

avatar
0
1
Виктор, я запутался с числом "а" и "q". В том моменте, когда функция перспективы будущего уже казалась абсолютно очевидной, вдруг, всё сорвалось, и все расчеты оказались напрасными. Что же нам делать с той значительной частью населения, которая не любит математику?
avatar
2
An=Cn-Bn=(C-B)P=aP, где (C-B)=a (просто обозначение для простоты записи), а второй сомножитель (P) может быть представлен в виде: P=qn-1+Qnk+2.

Спасибо за вопрос. А главное освоить это доказательство стоит, чтобы НИКОМУ не верить на слово.

avatar

Форма входа

Поиск

Категории

Zero - Антон Филин [6]
Виктор Сорокин [325]
Произведения Виктора Сорокина. Возможность обсуждения произведений автора
Виктор Постников [65]
Виктор Постников - официальный автор Мечты
Елена Сумская [21]
Светлана Царинных [49]
Юрий Савранский [7]
Свои произведения дарит Вам писатель Юрий Савранский
Виктор Сорокин. Z-мир [134]
Читайте произведения официального автора Мечты Виктора Сорокина
Виктор Сорокин. Не может быть. [60]
Официальный автор Мечты говорит новое слово
Виктор Сорокин. Подарок. Поэма Любви. Повесть [23]
Повесть Виктора Сорокина, которую до Интернета школьники переписывали от руки
Сергей Магалецкий [6]
Владимир Карстен [24]
Гармония - реализуемая функциональность
Джон Маверик [18]
Андрей Будугай [9]
Рефат Шакир-Алиев [1]

Новые комментарии

Проєкт пошуку нової мелодії для гімну "Республіки Мрії". Доєднуйтесь!

Нова пісня про те, як це важливо - вірити та чекати.

Красива пісня про цінність життя.

Песня о любви .... Почему бы не послушать ...

Друзья сайта

Статистика


Онлайн всего: 59
Гостей: 59
Пользователей: 0
Flag Counter

%